A Comparative Analysis of Glomerulus Development in the Pronephros of Medaka and Zebrafish
نویسندگان
چکیده
The glomerulus of the vertebrate kidney links the vasculature to the excretory system and produces the primary urine. It is a component of every single nephron in the complex mammalian metanephros and also in the primitive pronephros of fish and amphibian larvae. This systematic work highlights the benefits of using teleost models to understand the pronephric glomerulus development. The morphological processes forming the pronephric glomerulus are astoundingly different between medaka and zebrafish. (1) The glomerular primordium of medaka - unlike the one of zebrafish - exhibits a C-shaped epithelial layer. (2) The C-shaped primordium contains a characteristic balloon-like capillary, which is subsequently divided into several smaller capillaries. (3) In zebrafish, the bilateral pair of pronephric glomeruli is fused at the midline to form a glomerulus, while in medaka the two parts remain unmerged due to the interposition of the interglomerular mesangium. (4) Throughout pronephric development the interglomerular mesangial cells exhibit numerous cytoplasmic granules, which are reminiscent of renin-producing (juxtaglomerular) cells in the mammalian afferent arterioles. Our systematic analysis of medaka and zebrafish demonstrates that in fish, the morphogenesis of the pronephric glomerulus is not stereotypical. These differences need be taken into account in future analyses of medaka mutants with glomerulus defects.
منابع مشابه
Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function.
The zebrafish pronephric kidney provides a simplified model of nephron development and epithelial cell differentiation which is amenable to genetic analysis. The pronephros consists of two nephrons with fused glomeruli and paired pronephric tubules and ducts. Nephron formation occurs after the differentiation of the pronephric duct with both the glomeruli and tubules being derived from a nephro...
متن کاملCadherin-6 is required for zebrafish nephrogenesis during early development.
We performed functional analyses of cadherin-6 (cdh6) in zebrafish nephrogenesis using antisense morpholino oligonucleotide (MO) inhibition combined with in situ hybridization. We have cloned a zebrafish homolog (accession number AB193290) of human K-cadherin (CDH6), which showed 6063% identity and 7678% similarity to the human, mouse, chicken and Xenopus homologs. Whole-mount in situ hybridiza...
متن کاملMolecular Mechanisms of Podocyte Development Revealed by Zebrafish Kidney Research
Elucidating the gene regulatory networks that control kidney development can provide information about the origins of renal birth defects and kidney disease, as well as insights relevant to the design of clinical interventions for these conditions. The kidney is composed of functional units termed nephrons. Renal malfunction often arises from damage to cells known as podocytes, which are highly...
متن کاملPodocalyxin regulates pronephric glomerular development in zebrafish
Vertebrate glomerular podocytes possess a highly sialylated transmembrane glycoprotein, Podocalyxin. In mammals, the sialic acid of Podocalyxin plays a crucial role in the formation of the characteristic podocyte architecture required for glomerular filtration. We examined the function of Podocalyxin in the developing zebrafish pronephros by disrupting the expression of podocalyxin through the ...
متن کاملSchip1 Is a Novel Podocyte Foot Process Protein that Mediates Actin Cytoskeleton Rearrangements and Forms a Complex with Nherf2 and Ezrin
BACKGROUND Podocyte foot process effacement accompanied by actin cytoskeleton rearrangements is a cardinal feature of many progressive human proteinuric diseases. RESULTS By microarray profiling of mouse glomerulus, SCHIP1 emerged as one of the most highly enriched transcripts. We detected Schip1 protein in the kidney glomerulus, specifically in podocytes foot processes. Functionally, Schip1 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012